Mark McIlroy
Copyright 2013 by Blue Sky Technology
Smashwords Edition
ISBN: 9781301002085
A book about computer programming
This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given away to other people. If you would like to share this book with another person, please purchase an additional copy for each recipient. If you’re reading this book and did not purchase it, or it was not purchased for your use only, then please return to Smashwords.com and purchase your own copy. Thank you for respecting the hard work of this author
A computer program is a set of statements that is used to create an output, such as a screen display, a printed report, a set of data records, or a calculated set of numbers.
Most programs involve statements that are executed in sequence.
A program is written using the statements of a programming language.
Individual statements perform simple operations such as printing an item of text, calculating a single value, and comparing values to determine which set of statements to execute.
Simple instructions are performed in hardware by the computer’s central processing unit.
Complex instructions are written in programming languages and translated into the internal instruction set by another program.
Computer memory is generally composed of bytes, which are data items that contain a binary number. These values can range from 0 to 255.
Memory locations are referred to by number, known as an address.
A memory location can be used to record information such as a small number, data from a graphics image, part of a memory address, a program instruction, and a numeric value representing a single letter.
Program instructions and data are stored in memory while a program is executing.
Programs written in procedural languages involve a set of statements that are performed in sequence. Most programs are written using procedural languages.
Third generation languages are languages that operate at the level of individual data items, “if” statements, loops and subroutines.
A large proportion of programs are written using third-generation languages.
Basic data types include numeric values and strings.
A string is a short text item, and may contain information such as a name or a report heading.
Numeric data may be stored internally as a binary number, which is a distinct format from a set of individual digits stored in a text format.
Several numeric data types may be available. These may include integer data types, floating point data types and other formats.
Integers are whole numbers and integer data types cannot record fractional numbers. However, operations with integer data types are generally faster than operations with other numeric data types.
Floating point data types store the digits within a number separately from the magnitude, and can store widely varying values such as 2430000000 and 0.0000002342.
Some languages also support a range of other numeric data types with varying range and precision.
Dates are supported as a separate date type in some languages.
A Boolean data type is a type that records only two values, “true” and “false”. Boolean data types and expressions are used in checking conditions and performing different actions in different circumstances.
The language Cobol is used in data processing. Data items within cobol are effectively fields within database records, and may contain a combination of text and numeric digits.
Individual positions within a data field in cobol can be defined as holding an alphabetic, alphanumeric or numeric character. Calculations can be performed with numeric fields.
Languages generally provide facilities for converting between data types, such as between two different numeric data types, or between numeric data in binary format and a text string of digits.
This may be done automatically within expressions, through the use of an operator symbol, or through a subroutine call.
When different numeric data types are mixed within an expression, the value with the lower level of precision is generally promoted to the higher level of precision before the calculation is performed.
The details of type promotion vary with each language.
A variable is a data item used within a program, and identified by a variable name.
Variables may consist of fundamental data types such as strings and numeric data types, or a variable name may refer to multiple individual data items.
Variables can be used in expressions for calculations, and also for comparisons to perform different sections of code under different conditions.
The value of a variable can be changed using an assignment statement, which changes the value of a variable to equal the value of an expression.
Constants such as fixed numbers and strings can be included directly within program code.
Constants can also be given a name, similar to a variable name, and used in several places with the program.
The value of a constant is fixed and cannot be changed without recompiling the program.
Variables can be defined as a collection of individual data items.
An array is a variable that contains multiple data items of the same type. Each item is referred to by number.
A structure type, also known as a record, is a collection of several different data items.
An object is an element of object orientated programs. An object is referred to by name and contains individual data items. Subroutines known as methods are also defined within an object.
Arrays can contain structures, and structures can contain arrays and other structures.
Some languages support other data structures such as lists.
A pointer is a variable that contains a reference to another variable. The second variable can be accessed indirectly by referring to the pointer variable.
Pointers are used to link data items together, when data structures are dynamically created as a program executes.
In some languages, pointers can be increased and decreases to scan through memory and access different elements within an array, or individual bytes within a block of data.
A reference to a variable is also known as an address, and refers to the location of the variable in memory.
The value of a pointer variable can be set to the address of another data item by using a reference operator with the data item.
The data item that a pointer points to can be accessed by using a de-referencing operator.
Individual variables can only be accessed within certain sections of a program.
Global variables can be accessed from any point within the code.
Local variables apply within a single subroutine. An independent copy of the local variables is created each time that a subroutine is called.
Where a local variable has the same name as a global variable, the name would refer to the variable with the tightest scope, which in that case would be the local variable.
Parameters are data values or variables that are passed to a subroutine when it is called. Parameters can be accessed from within the subroutine.
Some languages have multiple levels of scope. In these cases, subroutines may be defined within other subroutines, and variables may be defined within inner code blocks.
Variables within the current level of scope and outer levels of scope can be accessed, but not variables within an inner level of scope or in an independent part of the system.
Modules and objects may have public and private subroutines and variables. Public variables are accessible outside the module, while private variables are only accessible within the module.
The use of global variables can lead to interactions between different parts of the code, which may make debugging and modifying the code more difficult.
Global variables exist for the period of time that the program is running.
Local variables are created when a subroutine is called, and expire when the subroutine terminates.
Static variables may have a scope that applies within a single subroutine, however they have a lifetime that exists for the full period that the program is executing, and they retain their value from one call to the subroutine to the next.
Dynamically created data items exist until they are freed. Dynamic memory allocation involves creating data items while a program is running.
This may be done explicitly, or it may occur automatically when the last remaining variable that points to the item is assigned a different value, or expires as its level of scope terminates.
An expression is a combination of constants, variables and operators that is used to calculate a value.
An assignment operation involves a variable name and an expression. The expression is evaluated, and the value of the variable is changed to equal the result of the expression.
Expressions are also used within control flow statements such as “if” statements and loops.
Numeric expressions include the standard arithmetic operations of addition, subtraction, multiplication and division and exponentiation.
The basic string operations are concatenating two strings to form a single string, extracting a substring, and comparing strings.
String expressions may include constant strings, string variables, and operators such as a concatenation operator.
Boolean variables and expressions have only two possible values, “true” and “false”.
An expression containing a relational operator, such as “<=”, is a Boolean expression. For example, “5 < 3” has the value “false”.
The Boolean operators “and”, “or” and “not” can also be used in expressions. An “and” expression has the value “true” when both parts are true, an “or” expression has the value “true” when either value is true, and a “not” expression reverses the value.
Boolean expressions are used within “if” statements to execute code under certain conditions and within loops to repeat a series of statements while a condition remains true.
An assignment statement contains a variable name, an assignment symbol such as an “=” sign, and an expression.
The expression is evaluated, and the value of the variable is set to equal the result of the expression.
Some languages are expression-focused rather than statement-focused. In these languages, an assignment operation may itself be an expression, and may be used within other expressions.
An “if” statement contains a Boolean expression and an associated block of code. The expression is evaluated, and if the result is true then the statements within the block are executed, otherwise they are skipped.
An “if” statement may also have a block of code attached to an “else” section. If the expression is false, then the code within the “else” section is executed, otherwise it is skipped.
A loop statement may contain a Boolean expression. The expression is evaluated, and if it is true then the code within the block is executed. The control flow then returns to the beginning of the loop, and the cycle repeats the loop each time that the condition evaluates to true.
Other loop statements may also be available, such as statements that specify a fixed number of iterations, or statements that loop through all items in a language data structure.
Some languages support a “goto” statement. A goto statement causes a jump to a different point in the program to continue execution.
Code that uses goto statements can develop very complex control flow and may be difficult to debug and modify.
Some languages also support structured goto operations, such as a statement that terminates the current loop mid-way through the loop code.
These operations do not complicate the control flow to the same extent as general goto statements, however these operations can be easily missed when code is being read.
For example, a statement in an early part of a complex loop may result in the loop being exited when it is executed. This statement complicates the control flow and may make interpreting the loop code more difficult.
In some languages, exception handling subroutines and sections of code can be defined.
These code sections are automatically executed when an error occurs.
Including the name of a subroutine within a statement causes the subroutine to be called. The subroutine name may be part of an expression, or it may be an individual statement.
When the subroutine is called, program execution jumps to the beginning of the subroutine and execution continues at that point. When the code in the subroutine has been executed, or a termination statement is performed, the subroutine terminates and execution returns to the next statement following the original subroutine call.
Subroutines are independent blocks of code that are referred to by name.
Programs are composed of a collection of subroutines.
When execution reaches a subroutine call the program execution jumps to the beginning of the subroutine.
Control flow returns to the point following the subroutine call when the subroutine terminates.
Subroutines may include parameters. These are variables that can be accessed within the subroutine. The value of the parameters is set by the calling code when the subroutine call is performed.
Calling code can pass constant data values or variables as the parameters to a subroutine call.
Parameters are passed in various ways. “Call-by-value” passes the value of the data to the subroutine. “Call-by-reference” passes a reference to the variable in the calling routine, and the subroutine can alter the value of a parameter variable within the calling routine.
Call by value leads to fewer unexpected effects in the calling routine, however returning more than one value from a subroutine may be difficult.
Subroutines may also contain local variables. These variables are accessible only within the subroutine, and are created each time that the subroutine is called.
In some languages, subroutines can also call themselves. This is known as recursion and does not erase the previous call to the subroutine. A new set of local variables is created, and further calls can be made.
This process is used for functions that involve branching to several points at each stage in a process. As each subroutine call terminates, execution returns to the previous level.
Comments are included within program code for the benefit of a human reader. Comments are identified as separate text items, and are ignored when the program is compiled.
Comments are used to include additional information within the code that is relevant to a particular calculation or process, and to describe details of the function within a complex section of code.
A declarative program defines structures and patterns, and may contain a set of information and facts.
In contrast, procedural code specifies a set of operations that are executed in sequence.
Declarative code is not executed directly, but is used as input to other processes.
For example, a declarative program may define a set of patterns, which is used by a parser to identify patterns and sub-patterns within a set of input data.
Other declarative systems use a set of facts to solve a problem that is presented.
Declarative languages are also used to define sets of items, such as records within data queries.
Declarative programs are very powerful in the operations that can be performed, in comparison to the size and complexity of the code.
For example, all possible programs can be compiled using a definition of the language grammar.
Also, a problem solving engine can solve all problems that fall within the scope of the information that has been provided.
Facts may include basic data, and may also specify that two things are equivalent.
For example:
x + y = z * 2
Month30Days = April OR June OR September OR November
FieldName = 342-???-453
expression: number “+” expression
The first example is a mathematical statement that two expressions are equivalent, the second example specifies that “Month30Days” is equal to a set of four months, the third example matches the set of field names beginning with 342 and ending with 453, and the fourth example specifies a pattern in a language grammar.
Patterns may be recursively defined, such as specifying that brackets within an expression may contain an entire expression, with potentially infinite levels of sub-expressions.
Declarative code may involve patterns, which have a fixed structure, and sets, which are unordered collections of items.
Declarative code may contain keywords, names, constants, operators and statements.
Keywords are language keywords that may be used to separate sections of the program and identify the type of information that is recorded.
The names may identify patterns, while the operators may be used to create a new pattern from other patterns.
Statements may be entered in the form of specifying that two expressions are equivalent.
The chain of connections is defined by the appearance of names within different statements. There is no order within a statement or from one statement to the next.
Programming languages appear in a wide variety of forms and structures.
In the language LISP, for example, all processing is performed with lists, and a LISP program consists of multiple brackets within brackets defining lists of data and instructions
Computer hardware executes a simple set of instructions known as machine code.
Machine code includes instructions to move data between memory locations, perform basic calculations such as multiplication, and jump to different points in the code depending on a condition.
Only machine code can be directly executed. Programs written in programming languages are converted to a machine code format before they are executed.
Machine code instructions and data are stored in memory while a program is running.
An operating system is a program that manages the operation of a computer. The operating system performs a wide range of functions, including managing the screen display and other user interface components, implementing the disk file system, managing execution of processes, and managing memory allocation and hardware devices.
Generally programs a developed to run on a particular operating system and significant changes may be required to run on other operating systems. This may include changing the way that screen processing is handled, changing the memory management processes, and changing file and database operations.
A compiler is a program that generates an executable file from a program source code file.
The executable file contains a machine code version of the program that can be directly executed.
On some systems, the compiler produces object code files. Object code is a machine code format however the references to data locations and subroutines have not been linked.
In these cases, a separate program known as a linker is used to link the object modules together to form the executable file.
Fully compiled code is generally the fastest way to execute a program.
However, compilation is a complex process and can be slow in some cases.
An interpreter executes a program directly from the source code, rather than producing an executable file.
Interpreters may perform a partial compilation to an intermediate code format, and execute the intermediate code internally.
This approach is slower than using a fully compiled program, and also the interpreter must be available to run the program. The program cannot be run directly in a stand-alone environment.
However, interpreters have a number of advantages.
An interpreter starts immediately, and may include flexible debugging facilities. This may include viewing the code, stepping through processes, and examining the value of data variables. In some cases the code can be modified when execution is halted part-way through a program.
A virtual machine provides a run-time environment for program execution. The virtual machine executes a form of intermediate code, and also provides a standard set of functions and subroutine calls to supply the infrastructure needed for a program to access a user interface and general operating system functions.
Virtual machines are used to provide portability across different operating platforms, and also for security purposes to prevent programs from accessing devices such as disk storage.
An extension to a virtual machine is a just-in-time compiler, which compiles each section of code as it begins executing.
A run-time execution routine can be used to execute intermediate code that has been generated by compiling source code.
Programs may be written using a language developed specifically for an application, such as formula evaluation system or a macro language.
The system may contain a parser, code generator and run-time execution routine.
Alternatively, the code generation could be done separately, and the intermediate code could be included as data with the application.
In some environments, subroutine libraries can be linked into a program statically or dynamically.
A statically linked library is linked into the executable file when it is created. The code for the subroutines that are called from the program are included within the executable file.
This ensures that all the code is present, and that the correct version of the code is being used.
However, executable files may become large with this approach. Also, this prevents the system from using updated libraries to correct bugs or improve performance, without using a new executable file.
Static linking may only be available for some libraries and may not be available for some functions such as operating system calls.
Dynamic linking involves linking to the library when the program is executing. This allows the program to use facilities that are available within the environment, such as operating system functions.
Dynamically linked libraries can be updated to correct bugs and improve performance, without altering the main executable file.
However, problems can arise with different versions of libraries.
Programs execution is generally based on the model of a single thread of execution.
Execution begins with the first statement in the program and continues through subroutine calls, loops and “if” statements until the program finally terminates.
At any point in time, the current instruction position will only apply to a single point within the code.
A system may include several major processes and threads, but within each major block the single execution thread model is maintained.
In order to run multiple programs and processes using a single central processing unit, many operating systems implement a time slicing system.
This approach involves running each process for a very short period of time, in rapid succession. This creates the effect of several programs running simultaneously, even though only a single machine code instruction is executing at any point in time.
On many systems, multiple programs may be run simultaneously, including more than one copy of a single program.
An executing program is known as a process. Each running program is an independent process and executes concurrently with the other processes.
A program may also start independent processes for major software components such as functional engines.
Some systems also support threads. A thread is an independently executing section of code. Threads may not be entire programs however they are generally larger functional components than a single subroutine.
Threads are used for tasks such as background printing, compacting data structures while a program is running and so forth.
On systems that support multiple user terminals with a central hardware system, users can start processes from a terminal. Multiple processes may operate concurrently, including multiple executing copies of a single program.
Languages have been developed to support parallel programming.
Parallel programming is based on an execution model that allows individual subroutines to execute in parallel.
These systems may be extremely difficult to debug. Synchronisation code is required to prevent conflicts when two subroutines attempt to update the same section of data, and to ensure that one task does not commence until related tasks have completed.
Parallel programming is rarely used. Total execution time is not reduced by the parallel execution process, as the total CPU time required to perform particular task is unchanged.
Event driven code is an execution model that involves sections of code being automatically triggered when a particular event occurs.
For example, selecting a function in a graphical user interface environment may lead to a related subroutine being automatically called.
In some systems several events could occur in rapid succession and several sections of code could run concurrently.
This is not possible with a standard menu-driven system, where a process must complete before a different process can be run.
Event driven code supports a flexible execution environment where code can be developed and executed in independent sections.
Interrupt driven code is used in hardware interfacing and industrial control applications. In these cases, a hardware signal causes a section of code to be triggered.
Interfacing with hardware devices is generally conducted using interrupts or polling. Polling involves checking a data register continually to check whether data is available. An interrupt driven approach does not required polling, as the interrupt handling routine is triggered when an interrupt occurs.
Arrays are the fundamental data structure that is used within third-generation languages for storing collections of data.
An array contains multiple data items of the same type. Each item is referred to by a number, known as the array index.
Indexes are integer values and may start at 0, 1, or some other value depending on the definition and the language.
Arrays can have multiple dimensions. For example, data in a two-dimensional array would be indexed using two independent numbers. A two dimensional array is similar to a grid layout of data, with the row and column number being used to refer to an individual data item.
Arrays can generally contain any data type, such as strings, integers and structures.
Access to an array element may be extremely fast, and may be only slightly slower than accessing an individual data variable.
Arrays are also known as tables.
This particularly applies to an array of structures, which may be similar to a table with rows of the same format but different data in each column. A table also refers to an array of data that is used for reference while a program executes.
In some cases the index entry of the array may represent an independent data value, and the array may be accessed directly using a data item.
In other cases an array is simply used to store a list of items, and the index value does not have any particular significance.
In cases where the array is used to store a list of data, the order of the items may or may not be significant, depending on the type and use of the data.
The following diagram illustrates a two–dimensional array.
Standard arrays are square. In a two-dimensional case, every row has the same number of columns, and every column has the same number of rows.
A ragged array is an array structure where the individual columns, or another dimension, may have varying sizes.
This could be implemented using a one-dimensional array for one dimension and linked lists for each column.
Alternatively, a single large array could be used, and the row and column positions could be calculated based on a table of column lengths.
The following diagram illustrates a ragged array.
A sparse array is a large array that contains many unused elements.
This can occur when a data item is used as an index into the array, so that items can be accessed directly, however the data items contain gaps between individual values.
Where entire rows or columns are missing, this structure could be implemented as a compacted array.
Alternatively, the index values could be combined into a single text key, and the data items could be stored by key using a structure such as a hash table or tree.
Another approach may involve using a standard array for one dimension, and linked lists to stored the actual data and so avoid the unused elements in the second dimension.
A sparse array is shown below
An associative array is an array that uses a string value, rather than an integer as the index value.
Associative arrays can be implemented using structures such as trees or hash tables.
Associative arrays may be useful for ad-hoc programs, as code can quickly and easily be written using an associative array that would require scanning arrays and other processing using standard code.
However, due to the use of strings and the searching involved in locating elements, these structures would have slower access times than other data structures.
A structure is a collection of individual data items. Structures are also known as records in some languages.
A programming structure is similar in format to a database record.
Arrays of structures are visually similar to a grid layout of data with each row having the same type, but different columns containing different data types.
In object orientated programming, a data structure known as an object is used.
An object is a structure type, and contains a collection of individual data items.
However, subroutines known as methods are also defined with the object definition, and methods can be executed by using the method name with a data variable of that object type.
Linked data structures consist of nodes containing data and links.
A node can be implemented as a structure type. This may contain individual data items, together with links that are used to connect to other nodes.
Links can be implemented using pointers, with dynamically created nodes, or nodes could be stored in an array and array index values could be used as the links.
Using dynamic memory allocation and pointers results in simple code, and does not involve defining the size of the structure in advance.
An array implementation may result in more complex code, although it may be faster as allocating and deallocating memory would not be required.
Unlike dynamic data allocation, the array entries are active at all times. Entries that are not currently used within the data structure may be linked together to form a free list, which is used for allocation when a new node is required.
A linked list is a structure where each node contains a link to the next node in the list.
Items can be added to lists and deleted from lists in a single operation, regardless of the size of the list. Also, when dynamic memory allocation is used the size of the list is not fixed and can vary with the addition and deletion of nodes.
However, elements in a linked list cannot be accessed at random, and in general the list must be searched to locate an individual item.
A doubly linked list contains links to both the next node and the previous node in the list.
This allows the list to be scanned in either direction.
Also, a node can be added to or deleted from a list be referring to a single node. In a singly linked list, a pointer to the previous node must be separately available in order to perform a deletion.
A binary tree is a structure in which a node contains a link to a left node and a link to a right node.
This may form a tree structure that branches out at each level.
Binary trees are used in a number of algorithms such as parsing and sorting.
The number of levels in a full and balanced binary tree is equal to log2(n+1) for “n” items.
A B-tree is a tree structure that contains multiple branches at each node.
A B-tree is more complex to implement than a binary tree or other structures, however a B-tree is self balancing when items are added to the tree or deleted from the tree.
B-trees are used for implementing database indexes.
A self-balancing tree is a tree that retains a balanced structure when items are added and deleted, and remains balanced regardless of the order of the input data.
A stack is a data structure that stores a series of items.
When items are removed from the stack, they are retrieved in the opposite order to the order in which they were placed on the stack.
This is also known as a LIFO, Last-In-First-Out structure.
The fundamental operations with a stack are PUSH, which places a new data item on the top of the stack, and POP, which removes the item that is on the top of the stack.
A stack can be implemented using an array, with a variable recording the position of the top of the stack within the array.
Stacks are used for evaluating expressions, storing temporary data, storing local variables during subroutine calls and in a number of different algorithms.
A queue is used to store a number of items.
Items that are removed from the queue appear in the same order that they were placed into the queue.
A queue is also known as a FIFO, First-In-First-Out structure.
Queues are used in transferring data between independent processes, such as interfaces with hardware devices and inter-process communication.
Memory usage can be reduced with data that is not modified by placing the data in a separate table, and replacing duplicated entries with a single entry.
A compacted array can sometimes be used to reduce storage requirements for a large array, particularly when the data is stored as a read-only reference, such a state transition table for a finite state automaton.
In the case of a two dimensional array, a additional one-dimensional array would be created.
Entries such as blank and duplicated rows could be removed from the main array, and the remaining data compacted to remove the unused rows. This may involve sorting the array rows so that adjacent identical rows could be replaced with a single row.
The second array would then be used as an indirect index into the main array. The original array indexes would be used to index the new array, which would contain the index into the compacted main array.
An indirectly addressed compacted array is shown below
For example, where a set of strings is recorded in a data structure, a separate string table can be created.
The string table would be an array containing the strings, with one entry for each unique string. The main data table would then contain an index into the string table.
A hash table is a data structure that is designed for storing data that is accessed using a string value rather than an integer index.
A hash table can be implemented using an array, or a combination of an array and a linked structure.
Accessing an entry in a hash table is done using a hash function. The hash function is a calculation that generates a number index from the string key.
The hash function is chosen so that the indexes that are generated will be evenly spread throughout the array, even if the string keys are clustered into groups.
When the hash value is calculated from the input key, the data item may be stored in the array element indexed by the hash value. If the entry is already in use, another hash value may be calculated or a search may be performed.
Retrieving items from the hash table is done by performing the same calculation on the input key to determine the location of the data.
Accessing a hash table is slower than accessing an array, as a calculation is involved. However, the hash function has a fixed overhead and the access speed does not reduce as the size of the table increases.
Access to a hash table can slow as the table becomes full.
Hash tables provide a relatively fast way to access data by a string key. However, items in a hash table can only be accessed individually, they cannot be retrieved in sequence, and a hash table is more complex to implement than alternative data structures such as trees.
A heap is an area of memory that contains memory blocks of different sizes. These blocks may be linked together using a linked list arrangement.
Heaps are used for dynamic memory allocation. This may include memory allocation for strings, and memory allocated when new data items are created as a program runs.
Implementing a heap can be done using pointers and a large block of memory. This requires accessing the memory as a binary block, and creating links and spaces within the block, rather than treating the memory space as a program variable.
Unused blocks are linked together to form a free list, which is used when new allocations are required.
A buffer is an area of memory that is designed to be treated as a block of binary data, rather than an individual data variable.
Buffers are used to hold database records, store data during a conversion process that involves accessing individual bytes within the block, and as a transfer location when transferring data to other processes or hardware devices.
Buffers can be accessed using pointers. In some languages, a buffer may be handled as an array definition with the array containing small integer data types, with the assumption that the memory block occupies a contiguous section of memory.
Although databases are generally used for the permanent storage of data, in some cases it may be useful to use a database as a data structure within a program.
Performance would be significantly slower than direct memory accesses however the use of a database a program element would have several advantages
A database has virtually unlimited size, either strings or numeric variables can be used as an index value, random accesses are rapid, large gaps between numeric index values are automatically handled and no code needs to be written to implement the system.
Visit: http://www.smashwords.com/books/view/360789 to purchase this book to continue reading. Show the author you appreciate their work!